Relative impact of insolation changes, fresh water fluxes and ice sheet on African and Asian monsoon characteristics

P. Braconnot, C. Marzin, M. Kageyama, and W. Zheng

Most results from C Marzin’s PhD
Simulations with the IPSL climate model
(Marti et al., 2010)

- Atmosphere (LMDZ)-ocean (NEMO)-sea-ice (LIM) et land surface (ORCHIDEE)
- Coupling with biochemical cycles: atmospheric chemistry-aerosols (INCA), ocean (PISCES) and land surface (ORCHIDEE) NOT considered here

Simulations presented here 300 to 700 yr long, mean seasonal cycle from last 200 to 400 years
Earth’s orbital parameters and changes in seasonality: Ex Holocene

Location of vernal equinox for different periods in the Holocene

Orbital parameters from Berger (1978)
Relative response of different sub-systems

Marzin and Braconnot, 2009

African and Asian monsoons not as amplified as the Indian monsoon between 6 and 9.5 kyr BP

Relative response / precession confirmed in Eemian simulation with the same model (Braconnot et al. 2008)
Is it consistent with sediment cores?

Bassinot et al. in prep

Wind 850hPA JJAS 6k – 0k

ODP Site 723

MD77-191

PAGES-2nd Global monsoon symposium Shanghai 2010
Ocean biochemistry and upwelling

Bassinot et al. in prep

Particular export production from off line simulations with PISCES:

- Signature in the export production related to changes in the upwelling intensity
- Relative response at the two sites consistent with summer monsoon intensification during the early Holocene.
- Value added to the ocean biogeochemistry in the model-data comparison.
9.5k1: crude parameterization of ice sheet melting

- Cooling of North Atlantic
- SST dipole in tropical Atlantic inhibits African monsoon
- Indian and African monsoons reduced

Following Swingedouw et al. 2006
Residual ice-sheet ? : 9.5 ka

Marzin and Braconnot, submitted

9.5k3: Ice sheet in the Northern hemisphere (Peltier 2004)

- Cooling of the Northern Hemisphere
- Reduction of African and East Asian monsoon intensity
- No clear signal over India
Atmospheric signature of the teleconnection

Marzin and Braconnot, submitted

TT: temperature averaged between 500 and 200 hPa

ΔTT

Fresh water

TT, 200hPa winds JJAS 9.5F − 9.5

Ice sheet

TT, 200hPa winds JJAS 9.5IS − 9.5
Relative effect of the different forcings on precipitation for key regions

Differences between the subsystems
Fresh water in different climatic context

Swingedouw et al. 2009, Marzin, in prep
Fresh water in different climatic context

TT: temperature averaged between 500 and 200 hPa ; ST: surface temperature

Swingedouw et al. 2009, Marzin, in prep
Sensitivity experiment to SST patterns for the LGM

Sensitivity experiments:
- NA North Atlantic alone
- TA: Tropical Atlantic (dipole)
- AC: complement

SST pattern due to fresh water flux in N Atlantic

[Maps showing SST patterns for different regions]
Sensitivity experiment to SST patterns for the LGM

- **Total**
  - Precip, winds JJAS LGMhF–LGMcF
  - 200hPa geopotential, winds LGMhF–LGMcF

- **NA**
  - Precip, winds JJAS LGMhNA–LGMcF
  - 200hPa geopotential, winds LGMhNA–LGMcF

- **TA**
  - Precip, winds JJAS LGMhTA–LGMcF
  - 200hPa geopotential, winds LGMhTA–LGMcF
Conclusion

- Combination of different climatic periods and forcings allow to better understand the sensitivity of the different monsoon subsystems.

- In IPSLCM4 Fresh water flux and ice sheet have similar response in Africa and different responses in India.

- Dominant role of the Atlantic dipole generated by a fresh water flux in the North Atlantic in the reduction of the Indian monsoon though the subtropical jet.

- Results need to be tested for the other periods and with other models.

- Model data comparison over land and ocean can provide guidelines to assess model results: a major issue for PMIP3.