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The existence of peatlands in the Amazonian lowlands has only recently been confirmed, owing to the 
remoteness of the area. These peatlands are important for regional carbon cycling and habitat diversity, and 
represent valuable potential resources for paleoecological research.

The Amazon’s floodplain 
peatlands
Amazonia, the world’s largest continuous 
area of humid tropical lowland rainfor-
est, is famous for its dense river network, 
large seasonal variations in water level (on 
average 10 m at Manaus, Brazil), and ex-
tensive floodplains and wetlands covered 
by Mauritia palms, floodplain forest or sa-
vanna-like vegetation (Irmler, 1977; Junk, 
1983; Junk and Piedade, 2005; Keddy et 
al., 2009). Despite the great extent of wet-
lands within the Amazon Basin, the exis-
tence of tropical peatlands has rarely been 
considered (but see Suszczynski, 1984; 
Schulman et al., 1999; Ruokolainen et al., 
2001; Guzmán Castillo, 2007). Two stud-
ies carried out recently in Peruvian low-
land Amazonia (Loreto region, Fig. 1) by 
members of the Amazon Research Team 
of the University of Turku (Finland) reveal 
that peat deposits, up to 6 m thick, are 
widespread on floodplain wetlands of the 
Western Amazon Basin (Lähteenoja et al., 
2009a, 2009b). Sixteen of seventeen stud-
ied wetland sites contained some kind of 
peat deposit. According to the very rough 
estimate of Schulman et al. (1999) based 
on local land-cover maps, satellite images, 
grey literature and sporadic field observa-
tions, Amazonian peatlands may cover up 
to 150 000 km2, an area equivalent to half 
of Finland, and about 75 % of the area cov-
ered by the better-known tropical peat-
lands of Indonesia (Rieley and Page, 2005; 
Page et al., this issue).

History and development 
Since their late Holocene inception, the 
peatlands identified in Peruvian Amazonia 
have accumulated peat and carbon at rel-
atively high rates (0.94 - 4.88 mm per year, 
and 26 - 195 g C m-2 per year, respectively) 

(Fig. 2) and therefore constitute a strong 
carbon sink (Lähteenoja et al., 2009b). 
These accumulation rates are comparable 
to those of the Indonesian tropical peat-
lands (Page et al., 2004) and are higher 
than those of the boreal peatlands (To-
lonen and Turunen, 1996).

The basal ages of five dated peat de-
posits varied from 0.588 cal ka BP (at 164 
cm) to 2.945 cal ka BP (at 565 cm) (Lähtee-
noja et al., 2009b), which are considerably 
younger than basal ages determined in 
peatlands in many other regions of the 
world (cf., Korhola et al., 2010). There are 
several possible reasons for this. A pa-
leoecological study of lake sediments in 
Peruvian Amazonia suggests that the dry 
conditions of the middle Holocene were 
followed by a period of increasingly wet 

conditions beginning some time between 
4.2 and 2.54 cal ka BP (Bush et al., 2007). 
Although our oldest peat initiation dates 
coincide broadly with the onset of this wet 
interval, some of the peat deposits have 
much younger basal ages (Lähteenoja et 
al., 2009b), indicating that peat formation 
was not determined purely by climate. 
Peat initiation may be controlled by the 
dynamic lateral migration of western 
Amazonian rivers, characterized by mean-
dering and avulsion (Kalliola et al., 1992; 
Neller et al., 1992; Pärssinen et al., 1996), 
which have the potential to erode and 
bury peat deposits. Peat accumulation 
probably began when an area with water-
logged conditions was isolated from the 
immediate destructive influence of rivers. 
Consequently, the Western Amazon Basin 

Figure 1: The location of the study sites (from Lähteenoja et al., 2009b, Fig. 1). The map is a mosaic of histogram-
equalized Landsat TM satellite images (www.glcf.umiacs.umd.edu/). Palm swamps and forested wetlands have a 
reddish tone, more or less treeless open areas (like the open peatland Riñón) are blue-green, and other floodplain 
forests are pinkish to white.
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s  may be too dynamic to allow very old peat 
deposits to form (Lähteenoja et al., 2009b), 
compared with, for example, those found 
in the more geologically stable Indone-
sian tropical lowlands (Page et al., this is-
sue). This reasoning is supported by the 
presence of several buried peat deposits 
observed under the mineral subsoil of the 
peatlands (Lähteenoja et al., 2009b). Older 
peat deposits might well be found in geo-
logically more stable peripheral areas of 
the floodplains close to the non-flooded 
terra firme.

According to peat nutrient analyses 
and topographic measurements, some of 
the thickest, oldest and most stable peat-
lands have attained ombrotrophic (rain 
fed) conditions, despite their location in 
the middle of a floodplain environment 
(Lähteenoja et al., 2009a). The surface of 
these peatlands has risen above the maxi-
mum level of river floods because of their 
thick peat layer and convex topography 
(Fig. 2). This change of conditions, from a 
groundwater-fed system to a rain fed one, 
affects the ecosystem properties in a dras-
tic way, and, consequently, the variation 
of ombrotrophic bogs and minerotrophic 
swamps in the Amazonian lowlands con-
tributes to the regional ecosystem diver-
sity (Fig. 3; Lähteenoja et al., 2009a).

Record of paleoclimate and 
vegetation dynamics 
The existence of peat deposits (especially 
ombrotrophic ones) within the Amazon 
Basin potentially offers an excellent re-
source for studies of Holocene climate 
variability, paleohydrology and rainforest 
vegetation dynamics in the Amazonian 
lowlands, providing histories extending 
to the time of peat initiation (cf., Frost and 
Miller, 1987; Ledru, 2001; Hoorn, 2006). 
In a new project, due to begin in sum-
mer 2010, we will apply pollen, charcoal 
and sedimentological analyses to three 
of the peat sequences identified by Läh-
teenoja et al. (2009b) in order to recon-
struct changes in forest composition over 
the past 3 ka, focusing in most detail on 
the last 1 ka, the interval of most direct 
relevance to current ecological trends. 
Knowledge of tropical forest history on 
this timescale is crucial to the interpreta-
tion and understanding of recent eco-
logical changes taking place in the forest 
(Malhi et al., 2002). For example, studies 
of a network of forest plots across Amazo-
nia (Malhi et al., 2002) show that rates of 
tree mortality and recruitment (Phillips et 
al., 2004), growth rates (Lewis et al., 2004) 
and overall forest biomass (Baker et al., 
2004) have increased over the past three 
decades. Understanding the mechanisms 

behind these changes is important for 
predicting their consequences for forest 
biodiversity and for the role of forests in 
the global carbon cycle (Cox et al., 2008). 
One possible explanation is that forests 
are recovering from disturbance events 
prior to the start of monitoring (Wright, 
2005). We intend to test this hypothesis 
by applying paleoecological techniques 
to the newly discovered peat sequences. 
They are ideal for the purpose because: 1) 

they record an interval for which there are 
currently no detailed, high resolution re-
cords in this region; 2) the peat accumulat-
ed rapidly so should yield pollen records 
with decadal scale temporal resolution; 
and 3) they are located in a region where 
forest ecology has been monitored in per-
manent census plots for the past three de-
cades (RAINFOR project: Malhi et al., 2002). 
The new records will greatly improve our 
understanding of the mechanisms driving 

Figure 2: Peat profile and accumulation rates from the San Jorge ombrotrophic bog (Loreto region, Peru). Brown 
= peat, dark brown = clayey peat, gray = clay. Redrawn from Lähteenoja et al., 2009a). The core location and 
peat accumulation rates (mm/a) are shown in red (from Lähteenoja et al., 2009b).

Figure 3: Four of the peatland sites indentified by Lähteenoja et al. (2009a, 2009b) in Peruvian Amazonia (Loreto): a) 
Mauritia flexuosa peat swamp (Quistococha), b) forested peatland (San Jorge), c) savanna-like peatland (Riñón), 
d) forested peatland (Fundo Junior).



29 

PAGES news • Vol 18 • No 1 • April 2010

Sc
ie

nc
e 

H
ig

hl
ig

ht
s:

 P
ea

tla
nd

s 

29 

current changes in tropical forest ecology 
and the sensitivity of these forests to fu-
ture climatic change.

In contrast to the Southeast Asian 
tropical peatlands, these Amazonian peat-
land sites do not appear to be currently di-
rectly affected by anthropogenic actions. 
Nevertheless, climate change, deforesta-
tion, large-scale land-use projects (such 
as river damming, road construction and 
development of oil palm plantations) and 
extensive gas and oil exploration (Malhi et 

al., 2008) represent an indirect threat to 
the peatlands insofar as they contribute 
to drying of the regional climate. Conse-
quently, there is an urgent need to inves-
tigate further, and conserve, these little-
known Amazonian ecosystems.
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The presence of permafrost is shown to have dramatic impacts on land-atmosphere exchanges of key 
greenhouse gases.

Permafrost and the carbon cycle
Permafrost, soil that stays frozen for two 
or more years in a row, is a hot topic that 
has attracted a lot of attention in both 
the scientific and popular literature in 
recent years. Permafrost underlies 25% 
of the land areas in the Northern Hemi-
sphere including substantial areas with 
peatlands. With a warming climate that is 
particularly pronounced at high northern 
latitudes, where most permafrost is pres-
ent, many questions have been raised re-
garding what may happen to peatlands 
and their functioning when permafrost 
thaws. In areas with infrastructure, such as 
towns in northern Siberia, or oil and gas 
pipelines through areas underlain by per-
mafrost, the thawing represents a serious 
and possibly very expensive issue. Thaw-
ing permafrost may, however, have global 
implications through changes in natural 
ecosystem greenhouse-gas emissions.

Permafrost areas in the circumpolar 
North are estimated to hold more than 
1600 Pg of organic carbon (C) including al-
most 300 Pg in the form of peat (McGuire 
et al., 2009; Tarnocai et al., 2009) most of 
which has accumulated since the last gla-
cial maximum. In terms of atmospheric ex-
change of carbon, in the form of CO2 and 
CH4, the potential for additional releases 
are probably greater from these areas 
than anywhere else in the world. While the 
potential release from the huge stocks of 
carbon is significant, the actual data and 
year-round monitoring of atmospheric 
exchanges remain rare, and continuous 
flux measurements of CO2 are limited to 
a handful of sites. Continuous monitor-

ing of CH4 fluxes is even rarer; the number 
of operational sites is less than five. Our 
empirically based understanding of what 
permafrost does to the dynamics and in-
terannual variability in atmospheric (and 
dissolved run-off) fluxes of organic carbon 
is therefore still very poor. The longer-term 
dynamics on decadal to centennial times-
cales are even less well understood.

Carbon dynamics 
Basic features of how ecosystems are func-
tioning with and without permafrost have 
recently been discovered. At a central 

Alaskan site, Schuur et al. (2009) demon-
strated that permafrost thawing is accom-
panied by respiration of previously frozen, 
ancient organic carbon. In Siberian thaw 
lakes, methane has been observed form-
ing from recently thawed Pleistocene or-
ganic deposits (Walter et al., 2007).

The interannual and across-site vari-
ability of CO2 exchange in continuous 
permafrost ecosystems are driven pri-
marily by growing-season dynamics and 
moisture conditions. Several studies have 
shown that growing-season rates of CO2 
uptake by these ecosystems is closely re-

Figure 1: The Zackenberg valley in NE Greenland, an area underlain by continuous permafrost. The automatic 
chambers were used for the studies of methane emission dynamics during freeze-in (Mastepanov et al., 2008). 
Local inhabitants, the muskoxen, are present in the background. Photo by C. Sigsgaard, from Christensen et al., 
2009, reprinted with permission.
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