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current changes in tropical forest ecology 
and the sensitivity of these forests to fu-
ture climatic change.

In contrast to the Southeast Asian 
tropical peatlands, these Amazonian peat-
land sites do not appear to be currently di-
rectly affected by anthropogenic actions. 
Nevertheless, climate change, deforesta-
tion, large-scale land-use projects (such 
as river damming, road construction and 
development of oil palm plantations) and 
extensive gas and oil exploration (Malhi et 

al., 2008) represent an indirect threat to 
the peatlands insofar as they contribute 
to drying of the regional climate. Conse-
quently, there is an urgent need to inves-
tigate further, and conserve, these little-
known Amazonian ecosystems.
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The presence of permafrost is shown to have dramatic impacts on land-atmosphere exchanges of key 
greenhouse gases.

Permafrost and the carbon cycle
Permafrost, soil that stays frozen for two 
or more years in a row, is a hot topic that 
has attracted a lot of attention in both 
the scientific and popular literature in 
recent years. Permafrost underlies 25% 
of the land areas in the Northern Hemi-
sphere including substantial areas with 
peatlands. With a warming climate that is 
particularly pronounced at high northern 
latitudes, where most permafrost is pres-
ent, many questions have been raised re-
garding what may happen to peatlands 
and their functioning when permafrost 
thaws. In areas with infrastructure, such as 
towns in northern Siberia, or oil and gas 
pipelines through areas underlain by per-
mafrost, the thawing represents a serious 
and possibly very expensive issue. Thaw-
ing permafrost may, however, have global 
implications through changes in natural 
ecosystem greenhouse-gas emissions.

Permafrost areas in the circumpolar 
North are estimated to hold more than 
1600 Pg of organic carbon (C) including al-
most 300 Pg in the form of peat (McGuire 
et al., 2009; Tarnocai et al., 2009) most of 
which has accumulated since the last gla-
cial maximum. In terms of atmospheric ex-
change of carbon, in the form of CO2 and 
CH4, the potential for additional releases 
are probably greater from these areas 
than anywhere else in the world. While the 
potential release from the huge stocks of 
carbon is significant, the actual data and 
year-round monitoring of atmospheric 
exchanges remain rare, and continuous 
flux measurements of CO2 are limited to 
a handful of sites. Continuous monitor-

ing of CH4 fluxes is even rarer; the number 
of operational sites is less than five. Our 
empirically based understanding of what 
permafrost does to the dynamics and in-
terannual variability in atmospheric (and 
dissolved run-off) fluxes of organic carbon 
is therefore still very poor. The longer-term 
dynamics on decadal to centennial times-
cales are even less well understood.

Carbon dynamics 
Basic features of how ecosystems are func-
tioning with and without permafrost have 
recently been discovered. At a central 

Alaskan site, Schuur et al. (2009) demon-
strated that permafrost thawing is accom-
panied by respiration of previously frozen, 
ancient organic carbon. In Siberian thaw 
lakes, methane has been observed form-
ing from recently thawed Pleistocene or-
ganic deposits (Walter et al., 2007).

The interannual and across-site vari-
ability of CO2 exchange in continuous 
permafrost ecosystems are driven pri-
marily by growing-season dynamics and 
moisture conditions. Several studies have 
shown that growing-season rates of CO2 
uptake by these ecosystems is closely re-

Figure 1: The Zackenberg valley in NE Greenland, an area underlain by continuous permafrost. The automatic 
chambers were used for the studies of methane emission dynamics during freeze-in (Mastepanov et al., 2008). 
Local inhabitants, the muskoxen, are present in the background. Photo by C. Sigsgaard, from Christensen et al., 
2009, reprinted with permission.
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lated to the timing of snow melt, with ear-
lier snowmelt resulting in greater uptake 
of atmospheric CO2 (Aurela et al., 2004; 
Groendahl et al., 2006). The annual C bud-
get is not only controlled by growing-sea-
son exchange, but also to a large extent 
by the losses during the shoulder (snow 
melt/soil thaw and plant senescence/soil 
freeze) and winter seasons (Johansson et 
al., 2006). These more complex impacts on 
the annual budgets become more impor-
tant outside permafrost regions, where 
warmer shoulder-season conditions pre-
vail. 

In northern Sweden we have docu-
mented changes in permafrost dynamics 
and effects on ecosystems and feedbacks 
on climate in terms of methane emis-
sions (Christensen et al., 2004; Johansson 
et al., 2006) and in relation to catchment 
scale greenhouse gas exchanges (Chris-
tensen et al., 2007). Here, the thawing 
permafrost generally leads to wetter hy-
drological conditions and subsequently 
greater emissions at the landscape scale. 
The seasonal and interannual pattern at 
this subarctic site is predictable and the 
emissions are stable from year to year 
(Jackowicz-Korczyński et al., in press). In 

contrast, we observed some surprising 
autumn emission dynamics at our high-
arctic measurement site in NE Greenland 
(Fig. 1). These findings (Mastepanov et 
al., 2008) show a second seasonal peak of 
emissions during the freeze-in (Fig. 2). This 
distinct feature has previously not been 
observed, most likely because earlier flux 
studies in continuous permafrost regions 
have not extended into the frozen season. 
After further investigation in collabora-
tion with atmospheric scientists, we have 
reached the preliminary conclusion that 
it may be a general feature of permafrost 
areas. This phenomenon helps to explain 
the observed seasonal dynamics in atmo-
spheric methane concentrations during 
the autumn (Mastepanov et al., 2008). 

The mechanism behind the freeze-in 
emissions in continuous permafrost areas 
is hypothesized as a release of methane 
from the subsurface pool accumulated 
over the growing season (Fig. 3). The 
methane is present mainly in gaseous 
form in entrapped gas bubbles below the 
water table level. The volume of the gas 
phase in the peat beneath the water table 
can be significant (from 0 to 19%;  Tokida 
et al., 2005), while the volumetric percent-

age of methane in this gas can be more 
than 50% (Tokida et al., 2005). When the 
soil starts to freeze from the surface down, 
a gas-proof layer forms and propagates 
downwards. The permafrost works as a 
gas-proof bottom preventing the gas from 
migrating deeper down. Because the ice 
has lower density than water, the freezing 
process causes an increase in the volume 
of the frozen zone, raising the pressure in 
the unfrozen layer. This process results in 
squeezing of the methane-rich gas to the 
atmosphere. An additional hypothesized 
necessary condition for the late-season 
methane burst to occur is the presence of 
some channels for the pressurized gas to 
escape to the atmosphere. We suggest it 
may be residual vascular plant tissues, or 
cracks in the frozen upper soil layer.

Records of changes in permafrost
Longer records of peatland permafrost are 
available from the geographical margins 
of the permafrost zone. For example, in 
Abisko, northern Sweden, permafrost has 
been monitored for decades. Here, the sur-
face active layer has become thicker over 
the last three decades. In nine peatlands 
along a 100 km-long transect the trend 
is similar and in some peatlands the per-
mafrost has even disappeared completely 
(Åkerman and Johansson, 2008). This 
trend is also reflected in larger scale mod-
eling of permafrost (palsa) peatlands in 
northern Scandinavia (Fronzek et al., 2006) 
and from observations in North America 
(Vallee and Payette, 2007; Turetsky et al., 
2007). This prevalent trend towards trans-
formation of permafrost landscapes calls 
for an understanding of ecosystem fluxes 
both where the permafrost is still present 
and where it has disappeared. 

Modern process studies, monitor-
ing and measurement of fluxes in these 
ecosystems need to be complemented 
by paleorecords of longer-term perma-
frost aggradation and degradation cycles 

Figure 2: Schematic illustration of the seasonal dynamics of methane emissions from peatlands as observed in 
Zackenberg (orange) and subarctic Sweden (green), respectively. These very different seasonal patterns reflect 
differences in both the length of the peatlands growing season (solid lines) and the special emission patterns 
associated with the freeze-in burst observed in a continuous permafrost environment (dashed line) (based on 
data from Jackowicz-Korczyński et al. in press and Mastepanov et al., 2008). Figure from Christensen et al., 2009, 
reprinted with permission.

Figure 3: An illustrated hypothesis for how the freeze-in burst of methane emission in continuous permafrost environments is released. a) Soil (brown), which sits on top of 
the permafrost (blue), is unfrozen during the growing season. As the ground freezes primarily from the surface down (b) the pressure builds up in the unfrozen zone and the 
accumulated gas (red) in the soil gets pressed out (c) through physical cracks and pores remaining in place from old vascular plants. Figure from Christensen et al., 2009, 
reprinted with permission.
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s (e.g., Kokfelt et al., submitted), to fully un-
derstand permafrost dynamics and the 
relationship with atmospheric methane 
concentrations over longer timescales. It 
is clear from paleorecords that peatland 
permafrost has expanded and contracted 
over the Holocene at different times in 
different places (e.g., Vardy et al., 2005; 
Oksanen, 2006). Although the impacts of 
Holocene peatland expansion on atmo-
spheric methane are now being explored 
(Smith et al., 2004; Korhola et al., 2010; 
Beilman et al., this issue), the implications 
of Holocene permafrost variability on past 
global methane concentrations have not 
yet been assessed. The sparse data on 

contemporary methane emissions show 
that peatlands with and without perma-
frost differ significantly in their function-
ing. More continuous measurements are 
required to document ongoing changes. 
Modern process models of carbon dy-
namics linked to paleoreconstructions of 
permafrost could produce critical insights 
into long-term role and functioning of 
northern peatlands in the global carbon 
cycle. 
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