

Physiology-based modelling of productivity and tree growth

Sandy P. Harrison
With inputs from I. Colin Prentice,
Guangqi Li, Kamolphat
Atsawawaranunt, Han Wang & the
Next-Gen Modelling Group

The least-cost hypothesis

- Plants mimimize the **sum of the unit costs** of maintaining transpiration (E) and carboxylation (V_{cmax}) capacities
- Costs are maintenance respiration rates per unit assimilation:
 - (a) active conducting tissue,
 - \circ (b) Rubisco and other proteins involved in photosynthesis.

See: Wright et al. (2004) Am Nat; Prentice et al. (2014) Ecol Letters

The co-ordination hypothesis

- The Rubisco-limited and electron-transported limited rates
 of photosynthesis are equal under average daytime
 conditions
 - Prediction: optimal photosynthetic capacities (V_{cmax} , J_{max}) for any given environment.
 - \triangleright Acclimation of V_{cmax} and J_{max} (in space and time).

See: Haxeltine & Prentice (1996) Func Ecol; Maire et al. (2012) PLOS One

P model: a universal model for GPP

 A_J = assimilation rate (GPP) I_{abs} = absorbed light

$$A_J = \varphi_0 I_{abs} m \sqrt{1 - \left(\frac{c^*}{m}\right)^{\frac{2}{3}}} \qquad \text{where}$$

$$m = \frac{c_a - \Gamma^*}{c_a + 2\Gamma^* + 3\Gamma^* \sqrt{\frac{1.6D\eta^*}{\beta(K + \Gamma^*)}}}$$

 $\Gamma^* = CO_2$ compensation point (in absence of drak respiration)

 φ_0 = intrinsic quantum efficiency of photosynthesis= 0.085 c^* = cost factor for electron transport capacity = 0.41

 $\beta = b/a = \text{ratio of cost factors for carboxylation and}$

water transport =146

Global data-model comparison of monthly GPP

LM productivity changes

Multiple climate controls on productivity

Impact of CO₂

Some false statistical modelling assumptions about trees

- Ontogenetic effects can be removed through smoothing
- A single climate factor controls growth
- Stationarity of climate control through time
- Non-climate factors (e.g. CO₂) have no influence on growth
- Stem allocation is constant proportion of total productivity

Tree growth modelling: PT model

Wang et al., 2014; Biogeosci; Li et al., 2014, Biogeosci; 2016, Li et al., 2016 EcoMod

Tree growth modelling

Pinus koraiensis, Changbai, China

- Initialise each simulation from the actual diameter in 1958 for each tree
- Sort the individual trees into 3 age cohorts (young, mature, and old)

Modelling ontogeny

Correct simulation of age cohorts (Changbai)

Controls on tree growth

Callitris, Great Western Woodlands

- Mean level OK; interannual variability OK
- Trend wrong

- Again, model shows same responses to climate variables as observations,
 except [CO₂]
- No effect from [CO₂] for observation, but model simulates significant [CO₂] response.

Li et al., (2016) ECOMOD

CO₂ impact

Allocation

year

Variance partitioning

- CO₂: 70%
- Soil moisture:30%

Glacial *Juniperus* from La Brea Tar Pits

Trees at the LGM

- glacial c_i/c_a is similar to today
- c_i = 100~120 ppm,
 STARVATION level
- BUT glacial growth (ring width) is similar to today

Li et al. 2017, Nature Scientific Reports

Climate cooler and wetter

- Cooler = lower photorespiration + less drought
- Wetter = less drought

Biggest effect from

temperature: -46%;

Precipitation effect: -17%

Take-home messages

- Assumptions of statistical reconstruction techniques violated under changing climate (past and future); but we can use knowledge about the biology
- Plants are clever: optimise performance to maximise growth (on both short and long-time scales): optimal resource allocation theory is biological "law of thermodynamics"
- Trees aren't foresters: optimising stem growth instead of leaves/roots is not a sensible option; changes in allocation important
- The way forward: explicit modelling of productivity and tree growth

