The Transport Matrix Method (TMM)
(for fast, offline simulation of passive tracers in the ocean)

Samar Khatiwala

Department of Earth Sciences
University of Oxford
Why do we need alternatives to GCMs?

- Ocean circulation is sluggish and highly diffusive, and the time scale for ocean transport is $O(1000s)$ of years ...

... 4000-5000 y-long integrations are required for biogeochemical and proxy tracers to equilibrate:

- $y = H(x)$ is very expensive!
A matrix approach to tracer transport

Continuum tracer advection-diffusion equation:

\[
\frac{\partial c}{\partial t} = -\nabla \cdot (uc) + \nabla \cdot \kappa \nabla c + SGS(c) + q(c, t)
\]

Discrete time-stepping equation for a passive tracer can be written in matrix form:

\[
c^{n+1} = A^n c^n + q^n
\]

- \(c \) is the vector of tracer concentrations
- \(n \) is the time step
- \(A \) is the “transport matrix” (includes the effects of advection, diffusion, and (parameterized) SGS processes)
- \(q \) is the source/sink term for the tracer

Khatiwala et al. (2005); Khatiwala (2007)
Any discretized linear tracer equation can be written in matrix form

A 1-d example

\[\frac{\partial c}{\partial t} = \kappa \frac{\partial^2 c}{\partial x^2} \quad 0 < x < L, \]
\[c(x = 0, t) = a(t) \text{ and } c(x = L, t) = b(t) \]

\[c_{i}^{n+1} = c_{i}^{n} + \frac{\kappa \Delta t}{(\Delta x)^2} (c_{i+1}^{n} - 2c_{i}^{n} + c_{i-1}^{n}), \quad i = 1, \ldots, M \]
\[c_{0}^{n} = a(n \Delta t) \text{ and } c_{M+1}^{n} = b(n \Delta t) \]

\[
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_{M-1} \\
c_M
\end{bmatrix}^{n+1}
= \begin{bmatrix}
1 - 2\alpha & \alpha \\
\alpha & 1 - 2\alpha & \alpha \\
\alpha & 1 - 2\alpha & \alpha \\
\alpha & 1 - 2\alpha & \alpha
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_{M-1} \\
c_M
\end{bmatrix}^{n}
+ \begin{bmatrix}
\alpha & 0 \\
0 & 0 \\
\vdots & \vdots \\
0 & \alpha
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_{M+1}
\end{bmatrix}^{n}, \quad \alpha = \frac{\kappa \Delta t}{(\Delta x)^2}
\]
We can *empirically* construct A for any GCM by “probing” it with a passive tracer.

Grid points where δ’s are applied

In one time-step influence of δ only felt in a limited “halo” around grid point

Use graph coloring to identify “structurally independent” columns of A and compute a large number of columns *simultaneously*.
What good is all this?

- Circulation embedded in the TMs accurately represents the complex 3-d advective-diffusive transport (including all sub-grid scale parameterizations) of the underlying GCM.
- Once the TMs are known, the GCM can be dispensed with: tracer transport is simple a sequence of **sparse** matrix-vector products. We know how to do this very efficiently on parallel machines.

\[
c^{n+1} = A_i^n \left[A_e^n c^n + q^n \right]
\]

e.g., MITgcm ECCO-v4 ¼º, 50 levels: N=2.5x10^6, nnz(A_e)=0.0011%
Biogeochemical model (q) is “decoupled” from the tracer transport: one can mix and match ocean circulation and biogeochemical models

Ocean GCM

MITgcm
NEMO/UKESM1
NCAR/CESM
GFDL/CMXX
uVic ESCM

BGC model

OCMIP
MITgcm (MIT)
Darwin (MIT)
PISCES
MEDUSA (UKESM1)
BEC (NCAR)

https://github.com/samarkhatiwala/tmm

\[c^{n+1} = A_i^n [A_c^n c^n + q^n] \]
Modeling Rare Earth Elements (REEs)

- REEs are a coherent sequence of purely scavenged tracers.
- They are also a tool to elucidate the role of scavenging of other trace elements such as Fe and Zn.
- Nd isotopes for example are used as a proxy of past ocean circulation and climate.
- Ce is used as a paleo-proxy of redox conditions.
- Additionally, Pa and Th have long been used as proxies for ocean circulation and flux of biogenic particles.

Yves Plancherel, Oxford
Example: ^{231}Pa and ^{230}Th with reversible scavenging

If we can neglect the seasonal cycle (annual mean TM), the steady state solution satisfies a linear system of equations:

$$[A_i A_e - A_i \Lambda + A_i Q_{\text{rev}} - I] c = -\beta$$
^{231}Pa and ^{230}Th with reversible scavenging

Bottom layer $^{231}\text{Pa}/^{230}\text{Th}$ ratio computed with TM from ECCO state estimate (1º/23 levels)

Particle flux (POC, CaCO$_3$, dust, opal) and K_i from Siddall et al, 2005
^{231}Pa and ^{230}Th are not only on a proxy for ocean circulation but also for ocean biogeochemistry.
TMM is especially useful for parameter sensitivity

Mean deep North Pacific to North Atlantic gradient in ε_{Nd}

$K = \frac{\{\text{REE}_{\text{Particle}}\}}{\{\text{REE}^{3+}_{\text{free}}\} \cdot \{\text{Particles}\}}$

Yves Plancherel, Oxford
10Be proxy for solar magnetic field & irradiance: where is the best place in the ocean to sample this tracer?

10Be flux to sediments/atmospheric 10Be production rate

1=optimal

Lewis Carney, Oxford
In the most general case we can simply time-step the matrix equations forward in time:

\[\mathbf{c}^{n+1} = \mathbf{A}_{i}^{n} [\mathbf{A}_{e}^{n} \mathbf{c}^{n} + \mathbf{q}^{n}] \]

- All this requires is the ability to perform a sparse matrix-vector multiplication.
- For efficiency, portability and convenience this scheme has been implemented using PETSc (http://www.mcs.anl.gov/petsc/).
- PETSc is a widely used, state-of-the-art open source numerical library for solution of (sparse) linear and nonlinear equations on distributed-memory computers (using MPI).
- The TMM driver code, interfaces to a variety of popular BGC models and TMs from various GCMs are freely available from: https://github.com/samarkhatiwala/tmm.
- The TMM code will run without modification on pretty much any computer from your laptop to a supercomputer.
Using the TMM to constrain LGM circulation

- Use forcing from PMIP3 climate models to drive a common ocean model (UVic ESCM), extract TMs and then drive a common biogeochemical model.
The Coupled Biogeochemical-Isotope Model

- MOBI: Model of Ocean Biogeochemistry and Isotopes.
- MOBI incorporates 13C and 15N in all compartments of the carbon cycle; 14C is included only in DIC.
- Pa/Th and Nd driven by biogeochemical fluxes from MOBI
PMIP3 models systematically simulate a stronger and deeper AMOC in the LGM relative to that in their preindustrial (PI) control runs.

PMIP3 ensemble mean overturning

PMIP3 ensemble mean AMOC stronger by ~41% in the LGM

Muglia and Schmittner, GRL 2015
This overall pattern is reproduced by the UVic ESCM when forced with wind stress from the PMIP3 models, with a ∼39% increase in AMOC relative to a PI control run.

Mean overturning in UVic ESCM forced by PMIP3 ensemble mean wind stress

Table 2. Maximum Meridional Overturning, Percentage of Increment Between Wind Stress Experiments and Default Run, Salt Flux F_{salt} in the Atlantic Ocean, and Depth of the AMOC (All at 25°N) in the UVic Model Experiments

<table>
<thead>
<tr>
<th>Model Case</th>
<th>AMOC (Sv)</th>
<th>Change (%)</th>
<th>F_{salt} (10^6 kg/s)</th>
<th>AMOC Depth (m)</th>
<th>Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>9.10</td>
<td>-</td>
<td>89.23</td>
<td>1905</td>
<td>-</td>
</tr>
<tr>
<td>CCSM4</td>
<td>13.56</td>
<td>49</td>
<td>99.32</td>
<td>3103</td>
<td>63</td>
</tr>
<tr>
<td>GISS</td>
<td>11.07</td>
<td>22</td>
<td>108.60</td>
<td>2203</td>
<td>16</td>
</tr>
<tr>
<td>CNRM</td>
<td>11.15</td>
<td>22</td>
<td>106.10</td>
<td>3300</td>
<td>73</td>
</tr>
<tr>
<td>MPI</td>
<td>12.13</td>
<td>33</td>
<td>102.70</td>
<td>3080</td>
<td>62</td>
</tr>
<tr>
<td>MIROC</td>
<td>13.33</td>
<td>46</td>
<td>98.78</td>
<td>3060</td>
<td>61</td>
</tr>
<tr>
<td>MRI</td>
<td>13.55</td>
<td>49</td>
<td>101.00</td>
<td>3068</td>
<td>61</td>
</tr>
<tr>
<td>FGOALS</td>
<td>13.84</td>
<td>52</td>
<td>97.77</td>
<td>3048</td>
<td>60</td>
</tr>
<tr>
<td>IPSL</td>
<td>12.78</td>
<td>40</td>
<td>96.60</td>
<td>3123</td>
<td>64</td>
</tr>
</tbody>
</table>

*Each row corresponds to wind stress anomalies from a different PMIP3 model. The top row corresponds to the default case. All numbers correspond to experiments using the PMIP3 ice sheet.

Muglia and Schmittner, 2015
δ13C simulated by MOBI using circulations extracted from these PMIP3-forced runs appear inconsistent with LGM observations

Basin-averaged profiles of δ13C simulated using different PMIP3-based circulations
Simulated deep ocean radiocarbon ages are similar to or even slightly younger than present-day values, inconsistent with observations which suggest that deep waters were significantly depleted in 14C during the LGM (e.g., Skinner and Shackleton, 2004; Robinson et al., 2005; Burke and Robinson, 2012; Sarnthein et al, 2013).
How to generate an equilibrium LGM state with weaker and shallower AMOC?

- Deep circulation depends on poleward moisture transport (Saenko et al., 2003), which has been hypothesized to be lower during glacial periods (Sigman et al., 2007).
- A decrease in the SH eddy diffusivity for meridional moisture transport in UVic produces a weaker and shallower AMOC, more AABW in the Northern Hemisphere and saltier AABW than NADW.
δ^{13}C simulated by MOBI using a circulation with reduced moisture diffusivity seems more consistent with LGM observations.
Simulated deep ocean radiocarbon ages are also now significantly older than the PI control run ... although ventilation ages remain much younger.
Can we say something about glacial-interglacial changes in atmospheric CO$_2$ from these simulations?

• Run MOBI to equilibrium with PI (LGM) circulation, etc. and fixed atmospheric CO$_2$ of 277 (189) ppm.

• Then replace various variables affecting biogeochemistry (circulation, temperature, sea ice, ...) with their LGM (PI) values and allow the atmosphere and ocean to exchange CO$_2$.

• See how the partitioning of carbon changes between the ocean and atmosphere.
We change each parameter (circulation, sea ice, etc.) one at a time to see their individual effect.
We use the P^* framework of Ito and Follows (2005) to separate changes in atmospheric CO$_2$ due to physical factors from those due to changes in the efficiency of the (soft tissue) biological pump.

$Larger values of P^*$ imply a more efficient biological pump and thus a lower atmospheric CO$_2$.

Ito and Follows use a simple theoretical argument to show that atmospheric CO$_2$ varies with P^* as:

$$ P^* = \frac{\text{Mean regenerated phosphate concentration}}{\text{Mean phosphate concentration}} $$

This sensitivity is model dependent; for MOBI it is ~ -623 ppm.

How does the biological pump respond to these perturbations?
Effect of replacing various PI variables with their LGM values

<table>
<thead>
<tr>
<th></th>
<th>Circulation</th>
<th>Sea ice</th>
<th>Temp</th>
<th>Salt</th>
<th>Fe</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta p\text{CO}_2$</td>
<td>-6.6</td>
<td>14.5</td>
<td>-40.1</td>
<td>4.3</td>
<td>-5.7</td>
<td>-53.6</td>
</tr>
<tr>
<td>ΔP^*</td>
<td>-0.0584</td>
<td>-0.0277</td>
<td>0.0119</td>
<td>-0.0016</td>
<td>0.0092</td>
<td>-0.0559</td>
</tr>
<tr>
<td>$\Delta p\text{CO}_2/\Delta P^*$</td>
<td>112.2</td>
<td>-523.9</td>
<td>-3371.8</td>
<td>-2721.9</td>
<td>-623.8</td>
<td>958.3</td>
</tr>
</tbody>
</table>

![Graph showing changes in CO2 variables](image)
Summary

• TMM is a fast, accurate, and easy to use framework for ocean biogeochemical modeling
• Orders of magnitude more efficient than GCMs or conventional “offline” models
• Direct computation of (periodic) steady state tracer distributions
• Easy to perform adjoint tracer and sensitivity calculations
• Convenient for rapid “prototyping” and testing of novel biogeochemical models
• Freely available from: https://github.com/samarkhatiwala/tmm