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One of the most intriguing facets of the 
climate system is that it exhibits variability on 
all timescales, e.g. convective activity on an 
hourly timescale, synoptic weather systems 
on a daily timescale, large-scale telecon-
nection patterns with timescales from 
intra-seasonal to interannual, the coupled 
atmosphere-ocean system with variability 
on decadal and centennial timescales and 
then there are the timescales associated 
with the ice ages. This variability on different 
timescales is not arbitrary as discovered by 
Harold Edwin Hurst (1880-1978). Hurst was a 
hydrologist and investigated the long-term 
storage capacities of reservoirs (Hurst 1951). 
He was interested in estimating the optimal 
height of a dam so that the water level in 
the reservoir is consistently high enough to 
always allow a sufficient amount of water 
to flow out of the reservoir. by examining 
the water-level fluctuations in reservoirs, 
he discovered a relationship between the 
variability and the timescale over which the 
variability is estimated. This relationship is 
now called the Hurst effect, which describes 
among others the property that the variabil-
ity over short timescales has a smaller am-
plitude than over long timescales. The Hurst 
effect has since been discovered in many 
other climate variables like temperature, 
precipitation and tree rings (Hurst 1951). 

What is scaling?
Time series which are displaying the Hurst 
effect have an intriguing property: they 
remain statistically similar if one zooms in or 
out (Fig. 1a-b). Scaling is thus related to the 
notion of fractality (Mandelbrot 1983; Feder 
2013), and is mathematically encapsulated 
by the following equation:

F(n)∝nH       (1)

where n denotes the window size over 
which the amplitude of the fluctuations (F) is 
computed. The exponent H is then visualized 
by plotting the logarithm of F(n) against the 
logarithm of n. When doing so H corre-
sponds to the slope of the corresponding 
regression line.

We now show that the Hurst effect may 
emerge from two different effects: (i) exis-
tence of correlations between distant points 
in time and (ii) long-tailed distribution of the 
amplitudes of the data of interest. 

The first effect indicates that even far away 
points in time are still relatively strongly 
correlated; in other words, the serial cor-
relation of a time series decays very slowly. 
Furthermore, for the scaling effects related 
to the temporal evolution of time series, the 
above scaling equation (Eq. (1)) indicates that 
the knowledge of high-frequency variability 
allows one to predict the low-frequency vari-
ability of a time series.

To highlight this point we now compare a 
scaling time series with a short-memory 
time series in Figure 1 by applying one of 
the most often used statistical models of 
climate variability – the auto-regressive 
process of first order (Ar(1)). This is a short-
memory process that has a typical auto-
correlation timescale. On longer timescales 
this process acts like independent white 
noise and the time series values on those 

timescales become uncorrelated. This is 
illustrated in Figure 2. There we display a 
fluctuation analysis of an Ar(1) process and 
a long-memory process. On long timescales 
the Ar(1) process becomes uncorrelated 
with a slope of 0.5 (compare the fluctuation 
analysis (black line) with the line with a slope 
of 0.5 (blue line)). While for the long-memory 
process (red line), the slope is 0.75 (green 
line), indicating long-lasting serial correla-
tions. Even very far apart points in time are 
still correlated, in contrast to a short-memory 
process.

The contribution related to the probability 
distribution of the values of a time series 
is also illustrated in Figure 1. There we 
display a white noise (uncorrelated values), 
heavy-tailed distribution (α-stable) in both 
the typical linear-linear (Fig. 1c) and log-log 
scalings (Fig. 1d). For α=2 the distribution is 
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Figure 1: (A-B) Time series with scaling behavior. (A) A time series with scaling behavior and (b) shows the 
portion in the red box of (A). After zooming in, time series in (b) shows similar pattern as the time series in (A). 
(C-D) Probability distribution function of an alpha-stable distribution (c) with linear and (D) logarithmic axis 
scaling.
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the Gaussian distribution with an exponen-
tial decay of the probability density func-
tion (PDF) while for α<2 it has a power-law 
decay. The probability for very large events 
decays more slowly for smaller α values. 
Hence, extreme events are much more likely 
to occur for PDFs with a power-law decay of 
their tails. Heavy-tailed distributions have 
been shown to be relevant, for instance, for 
the modeling of the Dansgaard-Oeschger 
events (Ditlevsen 1999).

combining the two contributions to the 
Hurst exponent (i) long memory and (ii) 
power-law distributed jumps, the Hurst 
exponent can be written as:

     (2)

where J denotes the long-memory parame-
ter that determines how fast distant points in 
time decorrelate, and α is the tail exponent 
of the PDF (e.g. Franzke et al. 2012). Thus, 
both effects can contribute to the observed 
behavior.

What are the implications of scaling?
The long-memory property of many 
observed climatic time series has conse-
quences for the robust detection of trends. 
because long memory leads to the persis-
tence of the time series, long deviations 
from the mean state are very likely. This can 
lead to the appearance of apparent trends; 
so-called stochastic trends (See Fig. 1 of 
Franzke 2012). Long-memory processes can 
lead to apparent trends over relative long 
periods of time even though these trends are 
not caused by external forcings like increas-
ing greenhouse gas concentrations. These 
stochastic trends have to be distinguished 
from deterministic trends which are caused 
by external forcing.

The presence of long memory in the climate 
system represents a challenge for the detec-
tion of trends in climatic time series. Most 

trend studies just consider a short-memory 
process like an Ar(1) even though most cli-
mate time series also have the long-memory 
properties (bunde et al. 2014; Ludescher et 
al. 2016). This leads to bias in trend detec-
tion. In those cases, one is much more likely 
to assign a trend to be statistically significant 
even though it is not (Ludescher et al. 2016). 
Long memory increases the uncertainty of 
the trend estimates, but on the other hand 
the true trend could be much larger than 
under the short-memory assumption.

The long-memory property also induces 
clustering of extreme events. Long memory 
leads to long-term quasi-cycles and stochas-
tic trends, i.e. large values are likely followed 
by large values and vice versa. This tendency 
also leads to the fact that extremes are likely 
followed by other extremes and that there 
will also be long periods when no extremes 
will occur. This, in turn, leads to the cluster-
ing of extreme events in data, which may be 
used for the development of early warning 
systems of extreme events.

Long-memory property is also relevant for 
climate prediction. The stronger the long 
memory is, the better predictability we 
may have. Accordingly, using the scaling 
in climate, it is possible to design climate-
prediction models from the perspective of 
climate memory.

What are the physical 
mechanisms of scaling?
Since the long-memory property in the 
climate system is counterintuitive, it is impor-
tant to identify the underlying mechanisms 
which cause scaling in the climate system. 
The superposition of short-memory pro-
cesses can lead to the emergence of scaling 
(Granger 1980). This idea is based on the fact 
that the climate system is composed of many 
sub-components with different typical time-
scales (atmosphere, ocean, cryosphere, etc.) 
and we then observe their superimposed 

effect in our measurements. Franzke et al. 
(2015) show that regime behavior due to 
nonlinear dynamics can also lead to scaling 
behavior.
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Figure 2: (A) Fluctuation functions for Ar(1) process (black line) and scaling model (red line) with regression lines with slopes of 0.5 (blue line) and 0.75 (green line). (B) 
Power spectrum of Ar(1) process (black line) and scaling model (red line).
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