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76  SCIENCE HIGHLIGHTS: Building and Harnessing Open Paleodata

As humans alter the environment in unprec-
edented ways, forecasts of the future state of 
ecosystems become increasingly important. 
Good forecasts require skilled models, and pa-
leoecological data have played an important 
role validating retrospective model hindcasts. 
Modern analytical approaches, like data as-
similation, now allow paleodata to be explicitly 
incorporated into forward-looking model 
forecasts. In particular, paleodata can provide 
unique empirical constraints on forecasts of 
slow or infrequent events that are difficult 
to constrain with more recent instrumental 
measurements.

“Forecasting” has a specific meaning here, 
known from meteorology (Dietze 2017). An 
ecological forecast is a set of quantitative 
predictions about the most-likely future state 
(or reconstructed hindcast) of an ecosystem. 
A forecast is comprised of both models and 
data, each of which is incomplete and flawed: 
Models are simplified and imperfect repre-
sentations of reality, and paleodata are noisy, 
geographically sparse, usually indirect, mea-
surements of past ecosystems. Forecasting 
estimates the most-likely set of predictions of 
ecosystem state by weighting an ensemble of 
model predictions by the likelihood that they 
match statistical estimates of empirical data 
(Fig. 1A). 

Ecological models can be informed by 
paleodata via initial conditions, drivers, state 
variables, and parameters, each of which helps 
improve scientific inference (Fig 1B).

Initial conditions can have persistent impacts 
on ecosystem state in both models and in na-
ture (Turney et al. 2016). Paleoecological data 
can thus help ensure that model runs do not 
entrain the consequences of flawed initializa-
tion, e.g. by initializing from well-calibrated 
empirical estimates of historical vegetation 
(Paciorek et al 2016).

Drivers of ecosystem models include recon-
structions of climate and other external forces 
driving ecological processes. For retrospective 
studies, empirically estimated drivers (Tipton 
et al. 2016) can be assimilated into climate 
models using data-assimilation approaches 
similar to those advocated in Hakim et al. (this 
issue). 

State variables describe the state of the 
ecosystem being modeled over time. Plant 
biomass, for instance, is a state variable whose 
long-term dynamics can be modeled using 
paleoecological observations (Fig. 1A).

Model parameters, like the growth rate (r) 
in a population growth model, establish links 
among variables. Paleodata can validate 
predictions of long-term ecosystem dynamics 
based on a particular model parameterization, 

or they can identify the best among a set of 
competing parameterizations (Fig. 1B)

In data-model assimilation, discrepancies be-
tween model predictions and paleo-observa-
tions are resolved by considering their respec-
tive uncertainties; highly certain observations 
will exert a correspondingly stronger con-
straint on state variables or parameters. Hence, 
accurate representation of uncertainty is para-
mount. In Figure 1A, data from a fossil-pollen 
network, calibrated against vegetation survey 
data, produce a statistical reconstruction of 
changing plant biomass, accounting for uncer-
tainty in pollen counts, taphonomic processes, 
etc. (Dawson et al. 2016). The mechanistic 
linkages between biomass and soil carbon in 
an ecosystem model then allow the empirically 
constrained reconstruction of biomass to im-
prove estimates of soil carbon, an unobserved 
state variable. By narrowing uncertainty about 
long-term ecosystem dynamics in the past, this 
approach improves the model generally and 
thereby reduces uncertainty in forecasts of 
future ecosystem dynamics. 

The suite of approaches to paleodata-model 
fusion outlined here pose opportunities and 
challenges for the producers and synthesiz-
ers of open data. Win-win opportunities 
emerge from the iterative coupling between 
models and data (Dietze 2017), for example, 

by motivating new data campaigns to meet 
model demands. To capitalize on such op-
portunities, data stewards should work with 
statisticians and modelers to ensure that 
data are useable: For instance, when derived 
quantities, say temperature reconstructions, 
are archived, the raw data underlying them 
should also be archived, along with the code 
underlying all analyses. The rewards for this 
inconvenience will be new collaborations and 
increased predictive power!
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Figure 1: (A) Assimilating paleoecological estimates of aboveground plant biomass to forecast unobserved soil 
carbon. (B) Experimental designs for integrating paleoecological datasets with ecosystem models.
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